

Metabolomic Analysis of Sting Nematode Tolerance in Bermudagrass

Credit: R.P. Esser, Florida Department of Agriculture and Consumer Jing Zhang¹, Nicole Benda², William Crow², and Kevin Kenworthy¹

¹Department of Agronomy, University of Florida, 3105 McCarty Hall B, Gainesville, FL

²Department of Entomology, University of Florida, 1881 Natural Area Dr., Gainesville FL

Credit: J. O. Becker, University of California, Riverside.

Credit: W.T. Crow. UF/IFAS Entomology and Nematology Department

Metabolomics

- Metabolites (small molecules)
- Fuel and sustain life (chemical signaling, converting food into energy, starting materials)
- Metabolomics analysis
 - Difference in metabolomes between susceptible and tolerant lines
 - Metabolites that are associated with nematode tolerance
 - Marker in screening process

Materials and Methods

- African bermudagrass (Cynodon transvaalensis Burtt-Davy)
- One susceptible line (AB03) and one tolerant line (AB39) were grown a greenhouse.
- Treatment: Inoculation of 50 nematodes and the control with no nematodes
- Roots were harvested 90 days after nematode infection
- Data
 - Root biomass
 - Nematode counts in the soil
 - Global metabolomics profiling

Results

Results – metabolomes based on identified compounds

Results – sugar alcohols

Summary

- Further study is needed to determine the effect of erythritol and glycerol on sting nematodes.
- Which processes are responsible for the increased respiratory activity? Does it indicate nematode damage or a defense mechanism?

Acknowledgement

UF Southeast Center for Integrated Metabolomics Clinical and Translational Science Institute

SECIM Pilot and Feasibility

Contact:

• Jing Zhang, jingzhang687@ufl.edu