

Performance of Warm-Season Turfgrasses Under Salinity Stress

Ben Wherley, PhD Associate Professor- Turfgrass Science & Ecology b-wherley@tamu.edu

Southeastern Turfgrass Conference

May 16, 2017

- This research was part of a larger SCRI project which contributed to development of warm-season turfgrasses with enhanced *drought* and *salinity* stress tolerance
- Involves multi-institutional team of turfgrass breeders and physiologists
- Texas A&M University, University of Georgia, University of Florida, N.C. State University, and Oklahoma State University

United States Department of Agriculture National Institute of Food and Agriculture

Manuel Chavarria PhD Student, TAMU

The turfgrass breeding "dream team" is focused on creating environmentally sustainable turfgrass cultivars.

Water sources: Southeast region, 2013

Source: GCSAA EIFG

Phase 1 Objectives

Compare warm-season turf cultivar salinity tolerance in greenhouse screenings

	Species	Cultivar	Origin
В	Cynodon dactylon x C. transvaalensis Burt. Davy	Tifway	University of Georgia
В	Cynodon dactylon	Celebration	Sod Solutions, Inc.
Z	Z. japonica Steud	Empire	University of Florida
z	Zoysia matrella	Zeon	BladeRunner Farms
Z	Z. japonica Steud	Palisades	Texas A&M University
St A	Stenotaphrum secundatum	Raleigh	N.C. State University
St A	Stenotaphrum secundatum	Floratam	Univ. Florida/ Texas A&M
St A	Stenotaphrum secundatum	Palmetto	Sod Solutions, Inc.
SP	Paspalum vaginatum	Sea Isle I	University of Georgia
SP	Paspalum vaginatum	Seastar	University of Georgia

Data Collection & Analysis

- <u>Visual turf quality</u>: 1-9 scale weekly (1= completely brown turf, 9= perfect green turf, 6= minimally acceptable) (Morris, 1982)
- <u>Digital light box images</u>: To determine percent green cover for each pot (Karcher and Richardson, 2003)
- NDVI (Normalized Difference Vegetation Index)

$$NDVI = \frac{NIR - VIS}{NIR + VIS}$$

- <u>Shoot growth</u>: Weekly clipping collections
- <u>Recovery Potential</u>: After 4-week recovery period, visual quality and % green cover again evaluated
- <u>Final Biomass:</u> Verdure, thatch, & roots
- <u>Relative shoot growth reduction</u> due to salinity stress calculated

•Completely randomized block design with 4 reps

•Data analyzed using general linear model of SPSS; Fisher's LSD

•Expt. 1 (summer 2014); Expt. 2 (summer 2015)

Change in Quality after 6 weeks of salinity stress

Shoot Biomass Change (Yr 1)

Shoot Biomass Change (Yr 2)

Phase 2 Objectives

Utilize SEM and EDS to evaluate leaf surface anatomy and salt exudation characteristics under increasing salinity using the <u>most salt-tolerant lines</u> of each species from prior testing.

Salinity Exposure Phase

- Texas A&M University, College Station, TX
- 30-day greenhouse expt.- Summer, 2015
- *Top performing entry* within each species from prior screenings used

	Species	Designation	Origin
В	Cynodon dactylon	Celebration	Sod Solutions, Inc.
Z	Z. Matrella x Z. japonica	Dalz1313	Texas A&M University
St A	Stenotaphrum secundatum	Floratam	Texas A&M University
SP	Paspalum vaginatum	UGP3	University of Georgia

Top Cultivar/Exptl.

Materials & Methods

Salinity Exposure Phase

- Completely randomized block design with 4 reps
- Pots sub-irrigated at salinity levels of 2.5 (Control) and 30 dS m⁻¹
- Solution nitrate maintained at 300 mg/L NO_3-N
- Weekly increase of 10 dS m⁻¹ acclimation to reach final salinity of 30 dS m⁻¹

Microscopic Leaf Examination Following 30-day Salinity Exposure

Leaf anatomical development in response to 30 dS/m salinity exposure

Bermudagrass-Appearance of salt glands on leaf surfaces

Seashore Paspalum-Appearance of bladders on leaf surfaces

St. Augustinegrass-Devoid of salt glands or bladders **Zoysiagrass-**Appearance of salt glands on leaf surfaces Salt Gland Density x Species as Influenced by Salinity Stress

SEM + EDS used to aid qualitative & quantitative measurement of elemental analysis of salts and other compounds associated with leaf surfaces, with particular emphasis on sodium (Na) and chloride (Cl) ions

Phase 3 Objectives

Determine salt excretion capacities & root/shoot tissue accumulation profiles under increasing salinity levels for <u>top and bottom performing lines</u> of each species from earlier salinity screenings

	Species	Tested Salinity Tolerance	Cultivars	Origin
В	Cynodon dactylon	Highest	Celebration	Sod solutions
В	C. transvaalensis $x C$ dactylon = $(3x)$	Lowest	UGB79	University of Georgia
Z	Z. matrella x Z. japonica	Highest	DALZ1313	Texas A&M University
z	Zoysia matrella	Lowest	Zeon	University of Florida
St A	Stenotaphrum secundatum	Highest	Palmetto	Sod Solutions, Inc.
St A	Stenotaphrum secundatum	Lowest	Floratam	Univ. Florida/ Texas A&M
SP	Paspalum vaginatum	Highest	UGP3	University of Georgia
SP	Paspalum vaginatum	Lowest	UGP38	University of Georgia

Salt Excretion Capacity

Tissue Na Concentrations- 15 dS/m EC

Tissue Cl Concentrations- 15 dS/m EC

Shoot Na:K

Conclusions

- These results help to further elucidate salinity tolerance mechanisms contributing to intraand interspecific differences observed during earlier screenings.
- Collectively, the data support the notion that salinity tolerant genotypes employ one or more physiological mechanisms including salt excretion, root exclusion, limitation of Na and/or Cl transport to shoots, and maintenance of ion balance in coping with saline conditions.
- While DALZ1313, Zeon, and Celebration demonstrated high ion excretion; Celebration, UGP3, and UGP38 limited Na transport to shoots, and thus, maintained favorable ion balance under salinity stress. Conversely, Floratam and Palmetto demonstrated limited ability to tolerate salinity.

Thank you!

b-wherley@tamu.edu

United States Department of Agriculture National Institute of Food and Agriculture

