Every single drop: Utilizing deficit irrigation to managing warm-season turfgrass lawns.

> Jason K. Kruse University of Florida

Introduction

- Water is the most important environmental factor in establishing plants.
 - Water is the most frequently limiting factor in the landscape.
 - In most regions, irrigation is a constant need.
 - In more humid, high rainfall areas of the country, supplemental irrigation is necessary.

Introduction

- Water availability will set the pace for the rest of the landscape and determines the quality of the landscape.
 - Fertilization is dependent on water.
 - Mowing frequency and number will be determined by mowing.
 - Ornamentals are directly affected by irrigation.

Global Water Demand

- 2X increase every 20 years.
- Past 30 yrs, U.S. population has increased 52%; total water use has increased 300%
- 1960-1998 renewable water resources decreased 50%.
 - Another 50% reduction is expected by 2025.
- In 2001, 33% of all U.S. communities experienced water shortages.
- By 2025, half of all U.S. will experience water shortages and poorer water quality.

Reasons for Various Degrees of Water-Shortage Crises

- Water shortages do not occur only in lowrainfall regions.
- Shortages result from a wide range of reasons, not all are based on an actual shortage of water!
 - Development outpaces infrastructure.
 - Environmental concerns, regulations or legal decisions restrict the amount that can be used.

Mechanical and structural shortcomings.
 Water Pollution limits the amount available.

Evapotranspiration

- Evaporation = water loss from the soil surface.
- Transpiration = water loss from the plant.
 - In turf, the soil surface is usually covered by the turf canopy and most of the water loss is due to transpiration.

Estimating Evapotranspiration

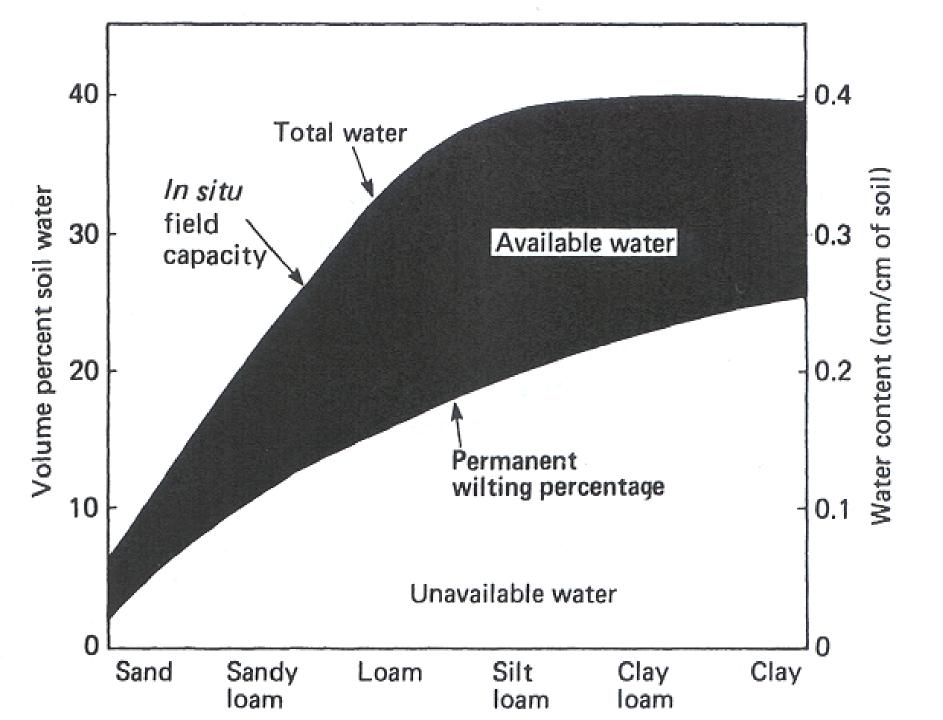
- Key information required:
 - Weather-pan evaporation
 - This is a measure of the evaporation from an open, circular pan of water.

Estimating Evapotranspiration

- Key information required:
 - Crop coefficient (KC)
 - In turf, open pan evaporation cannot be used alone.
 - The KC is a decimal number that is usually less than 1.0.
 - » 'Tifway' bermudagrass = 0.67
 - » Common bermudagrass = 0.68
 - » 'Meyer' zoysiagrass = 0.81
 - » Common centipedegrass = 0.85
 - » 'Raleigh' St. Augustinegrass = 0.72

Estimating Evapotranspiration

- In the following example, a pan evaporation rate of 2.25" / week has been measured.
- The KC value for 'Raleigh' St. Augustinegrass is listed as 0.72.
- The weekly water requirement of this turf area is:

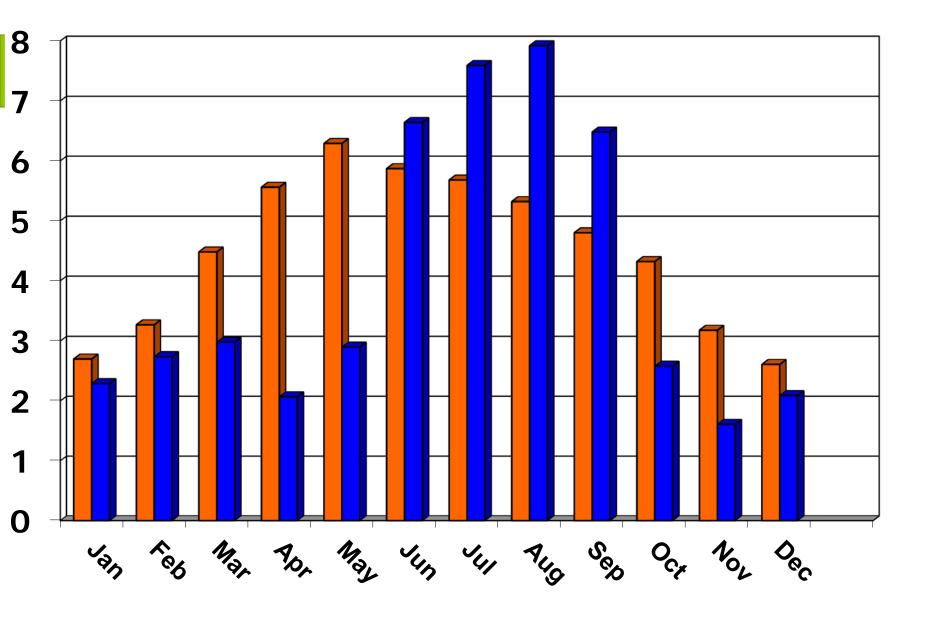

 $ET_{TURF} = (K_C)$ (Pan Evaporation) $ET_{TURF} = (0.72) (2.25) = 1.62$ " / week

- Plant Species
 - Warm-season grasses have lower ET rates than cool-season grasses.
 - Cool-season grasses require about 3X more water to produce a gram of dry matter through photosynthesis.
 - This difference is particularly important during stress periods when stomata close.
 - » Closed stomata decrease water loss but also restrict the entry of CO2 which limits photosynthesis.

- Humidity
 - Transpirational water loss occurs because of the gradient that exists between the moist cells of the plant and the moisture level in the surrounding environment.
 - The drier the air, the greater the gradient and the more water lost from the plant.

- Temperature
 - The higher the temperature, the greater the evaporation.
 - The effect of temperature on transpiration is a little more complex.
 - High temperatures can trigger a closing of the stomata, which helps conserve water.

- Soil Factors
 - Туре
 - Coarse-textured, sandy soils have poor water holding capacity and water that is not used by the root system shortly after application can quickly drain to a depth where it cannot be reached.
 - Clays have poor infiltration rates, which causes irrigation water to puddle on the surface and evaporate before it can be used by the plant.
 - Condition
 - Compaction can restrict rooting of plants that would normally develop a deep, extensive root system.


Reducing ET Rate

- Early morning irrigation (reduce E)
- Obtain full canopy cover (reduce E)
- Antitranspirants, plant growth regulators (reduce T)
- Deficit irrigation (reduce ET)

Water Use in Landscapes

Monthly Potential ET Monthly Rainfall

Objectives

- Evaluate water use under 10 irrigation strategies.
- Evaluate resulting turf quality (NTEP) under the 10 strategies.
- Collect data to assess soil water and physiological status.

Experimental Design

- RCBD 3 x 3 m plots
- 3 grasses x 4 reps x 10 treatments

Grasses

- 'Floratam' St. Augustinegrass (*Stenotaphrum secundatum*)
- 'Empire' Zoysiagrass (Zoysia japonica)
- 'Argentine' bahiagrass (Paspalum notatum)

Irrigation Treatments

T1 – 2 days/week T2 –1 day/week, RS T3 –2 days/week, RS T4 – ET adjusted T5 to T7 – Visual wilt cues T8 – 2 days/week 60% of recommended, RS T9 – No irrigation T10 – Re-establishment irrigation

'Floratam' St. Augustinegrass

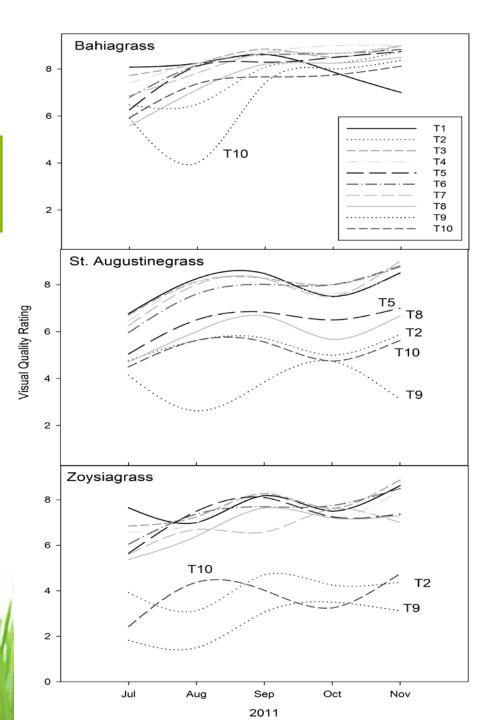
Full recommendation

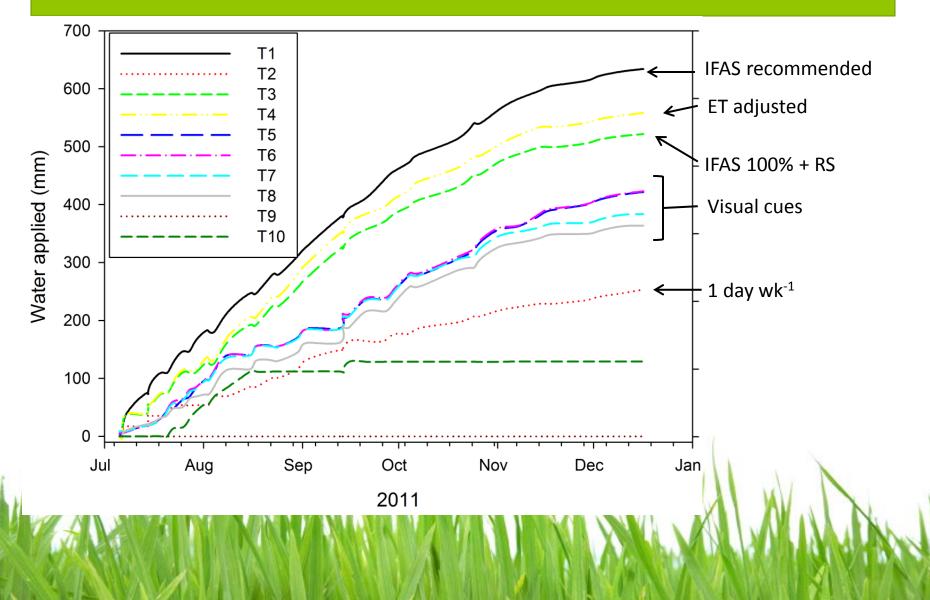
Visual cues



'Argentine' Bahiagrass

Full recommendation


'Empire' Zoysiagrass


1 Day/wk irrigation w/RS

Visual Quality

Water applied

Conclusions and recommendations

- Additional water savings possible.
- ET adjustment controller can save water
 May offer enhanced savings when paired with RS.
- Allowing homeowner manual adjustment can save even more, but does not work in conjunction with DOW restrictions – timing is of critical importance.

Acknowledgements

This work was supported by the Southwest Florida Water Management District and the Florida Agricultural Experiment Station.

Questions?

Jason Kruse, Ph.D. jkk@ufl.edu