DOLLAR SPOT RESISTANCE IN SEASHORE PASPALUM

Clinton Steketee Institute of Plant Breeding, Genetics, and Genomics The University of Georgia

Seashore paspalum (Paspalum vaginatum)

- High salt tolerance
- Coastal regions of southeastern USA
- Several cultivars are sensitive to dollar spot

Dollar spot (Sclerotinia homoeocarpa)

- 80 years since first described
- Most common turfgrass disease in North America
- Golf course greens and fairways
- Quality and playability issues
- Common cold of turf diseases

Allen et al., 2005. The Plant Health Instructor. DOI:10.1094/PHI-I-2005-0217-02

Signs and symptoms of S. homoeocarpa

Images: Clint Steketee and apsnet.org

Dollar spot infection process

- Can occur over broad temperature range
- Hyphae can
 - Penetrate directly
 - Enter through stomata
 - Enter through cut leaf tips
- Spread by
 - Humans
 - Equipment
 - Water and wind

Management – cultural practices

- Monitor fertility
 - Low N = dollar spot 1
- Manage thatch layer
- Removal of guttation fluids

Images: usga.org; bthbgcm.blogspot.com; sparkleberrysprings.com

Management - fungicides

Fungicides or fungicide classes used:

- Chlorothalonil
- Thiophanate-methyl
- DMI compounds
- Dicarboximides

- Boscalid (Emerald) is relatively new and effective with no known fungicide resistance
- Pathogen must be active for fungicide to be effective
- Resistance occurs in facultative saprophytes
 - Only resistant biotypes survive and become dominant

Management - host plant resistance

Dollar spot artificial inoculation

UGA utilizes grain mixture

Phenotyping

Visually rate for percent disease

 Digital image analysis (DIA)
 Analyze images with Assess®

Assess® analysis example

Leaf Hue: 31-191, Lesion Hue: 31-107 based on Horvath and Vargas, 2005

Genotype-isolate interaction

- Determine how several isolates affect paspalum lines
- Screening for resistance
 - Tested five isolates against five genotypes

Genotype differences

Isolate treatment and control differences

Genotype-isolate interaction conclusions

- Differences in genotype resistance and isolate virulence
- No significant interaction (p=0.54) i.e. P1 caused most disease regardless of genotype tested
- Use one highly virulent isolate for screening (P1)

USDA germplasm screening

- 90 seashore
 - paspalum genotypes
- Geographic and genetic diversity represented
- Inoculated with P1 isolate
- Goal is to find
 possible lines to use
 as parents in crosses

Resistance in the USDA collection

Accession

Population development ongoing

Resistant by susceptible crosses
 Mapping population
 Basic genetic studies

More efficient phenotyping needed

Detached leaf assay vs. field screening

Thank you for your attention!

- Dr. Paul Raymer
- UGA Turf Team
- Institute of Plant Breeding,
 Genetics, and Genomics

