### Performance of Bermudagrass vs. Synthetic Turf for Athletic Fields

### Adam Thoms University of Tennessee 68<sup>th</sup> Southeastern Turfgrass Conference



 Youth injuries (<14) cost the US public \$49,192,781,832 in 1997

Emergency room visits (2004)
– 116,000 – baseball
– 186,000 – football





AAP, US CPSC, & National Youth Sports Safety Foundation

• 38 million children & adolescents

(NIH, 2009)

• 3.5 million children under 14 receive medical treatment for sports injuries

(Safe Kids, 2007)

• 50% of these injuries are preventable

(Brenner, 2007; Safe Kids, 2007)



- 5.7% of high school football injuries were definitely related to field conditions, 15.2% were possibly related to field conditions (Harper et al., 1984)
- 10% of lawsuits related to sports injuries claim that the athletic field was inadequately maintained

(Dougherty, 1988)









#### Athlete-to-surface interactions (Bell, 1985; Nigg et al., 1984)



#### Surface hardness, consistency & traction







### Traction



# Why is playing quality so important?



#### Poor athletic field playing quality negatively impacts player performance & safety

(Cockerham et al., 1993)





#### University of Tennessee Center for Athletic Field Safety CAFS Facts

- 25 current sports turf research projects
- 5+ acres of athletic turf research
- Cool- and warm-season turf and synthetic surfaces





### Comparing Bermudagrass to Synthetic Turf





### **Root zones**

- 1) Sequatchie silt loam
- 2) Sand cap (6 in)
- 3) ASTM F2396
- 4) USGA specification
- 5) Gravel base

| USGA                     |       |  | ASTM                     |       |
|--------------------------|-------|--|--------------------------|-------|
| G                        | 0%    |  | G                        |       |
| FG                       | ≤ 10% |  | FG                       | ≤ 30% |
| VCS                      |       |  | VCS                      |       |
| CS                       | ≥60%  |  | CS                       | ≥60%  |
| MS                       |       |  | MS                       |       |
| FS                       | ≤ 20% |  | FS                       | ≤ 10% |
| VFS                      | ≤ 5%  |  | VFS                      | ≤ 5%  |
| Silt                     | ≤ 5%  |  | Silt                     | ≤ 5%  |
| Clay                     | ≤ 3%  |  | Clay                     | ≤ 3%  |
| Total Fines<br>(VFS+S+C) | ≤ 10% |  | Total Fines<br>(VFS+S+C) | ≤ 15% |

#### Surfaces

 Bermudagrass Slit-film Monofilament - Diamond Shape - Horseshoe Shape - Diamond Shape with thatch - Horseshoe Shape with thatch









ASTM F1702; ASTM F355; ASTM F1936; Richardson et al., 2001; Canaway et al., 1990

#### Digital Image Analysis to Determine Percent Green Cover



Light Box & Digital Camera



#### SimgaScan Pro 5 Software

























Simulated traffic events to reach 50% Cover: ASTM sand-based root zone: 19 Native soil root zone: 10

### **Rotational Resistance Comparisons**

#### Synthetic Turf = Bermudagrass



#### **F355 Synthetic Turf Surface Hardness Device**



(ASTM 2396)

### 9.1 kg (20 lbs) missile61 cm (24") drop height



### 2012 Surface Hardness Values



### 2013 Surface Hardness Values



### Conclusions

• Drainage makes a difference in higher moisture conditions

No differences between rotational resistance

• All surfaces were well below a GMAX 200

**Athlete-to-surface interactions**
## **Tennessee Athletic Field Tester**







## Comparing Bermudagrass to Synthetic Turf







# 210 lb. foot strike 9 shoes 3 surfaces Natural: bermudagrass Synthetic: monofilament and slit film

-

| Shoe Brand   | Model       |  |
|--------------|-------------|--|
| ADIDAS       | Malice D    |  |
| ADIDAS       | Scorch XS   |  |
| ADIDAS       | Zero Five   |  |
| Nike Nike    | Alpha Speed |  |
| Nike 🔺 🔢     | Alpha Vapor |  |
| Nike         | Land Shark  |  |
| Nike         | Vapor Talon |  |
| Under Armour | Nitro 3 Low |  |
| Under Armour | Saber Mid   |  |

## Peak Horizontal Forces



## Bermudagrass vs. Monofilament





## Bermudagrass vs. Monofilament



## Bermudagrass vs. Slit Film



## Bermudagrass vs. Slit Film



## Horizontal Force Conclusions

- The peak horizontal forces on each surface were Nike shoes:
  - -Bermudagrass x Nike Alpha Speed (338 lbs.)
  - -Monofilament x Nike Land Shark (327 lbs.)
  - -Slit Film x Nike Land Shark (312 lbs.)
  - Several other shoes were not statistically different and were not listed

## Horizontal Force Conclusions

- The three lowest horizontal forces on each surface were as follows:
   –Slit Film x ADIDAS Malice D (269 lb.)
  - -Bermudagrass x ADIDAS Malice D (256 lb.)
  - -Monofilament x ADIDAS Zero Five (238 lb.)
  - -Several other shoes were not statistically different and were not listed

## **Peak Vertical Forces**



## Bermudagrass vs. Monofilament



## Bermudagrass vs. Monofilament



## Bermudagrass vs. Slit Film



## Bermudagrass vs. Slit Film



## **Vertical Force Conclusions**

- Two of the largest vertical forces were on bermudagrass
  - Nike Alpha Speed (408 lbs.)
  - Under Armour Saber Mid (385 lbs.)

## **Vertical Force Conclusions**

- The three lowest vertical forces were on monofilament turf
  ADIDAS Scorch X (252 lbs.)
  Nike Alpha Vapor (249 lbs.)
  - -ADIDAS Zero Five (218 lbs.)

## What does this mean??

## It's the shoes not the surface!!!



### Temperature on Synthetic Turf

## Heat-related Illnesses – USA Today

- 123 high school football players died of heat-related illnesses between 1960 and 2009
- Annual death rate was around 1 per year from 1980 to 1994
- Rose to a yearly average of 2.8 in the next 15 years

## **Effect on Athletes**

 Heat transfer from the surface to the inner soles of shoes could result in heat-related illnesses



Buskirk et al. 1971

## **A Serious Issue!**

 Recognized by the NYC Dept. of Health and Mental Hygiene as the #1 health concern associated with infilled synthetic turf





Denly et al. 2008

Irrigation and Synthetic Turf?

## Average High Temp: 42.1° Average Low Temp: 30.1° 7 DAY FORECAST



## Synthetic Surfaces Tested

| Surface | Fiber Type             | Thatch | Pile Height | Infill Ratio (Rubber: Sand)                                            |
|---------|------------------------|--------|-------------|------------------------------------------------------------------------|
| 1       | Diamond                | Yes    | 2 inches    | 2.5 lb. : 1.0 lb.                                                      |
| 2       | Diamond                | No     | 1.25 inches | N/A                                                                    |
| 3       | Horseshoe              | Yes    | 2 inches    | 2.5 lb. : 1.0 lb.                                                      |
| 4       | Diamond                | No     | 2.25 inches | 2.8 lb. : 1.0 lb.                                                      |
| 5       | Horseshoe              | Yes    | 2 inches    | 2.5 lb. : 1.0 lb.                                                      |
| 6       | Slit Film              | No     | 2.25 inches | Layers (sand then<br>sand/rubber mixture then<br>rubber) 4 lb. : 3 lb. |
| 7       | Horseshoe              | No     | 2.25 inches | 2.8 lb. : 1 lb.                                                        |
| 8       | Horseshoe              | No     | 2.25 inches | 2.8 lb. : 1 lb.                                                        |
| 9       | Horseshoe/Slit<br>Film | Yes    | 2 inches    | 2.5 lb. : 1 lb.                                                        |
| 10      | Slit Film              | Yes    | 2 inches    | 2.5 lb. : 1 lb.                                                        |

## Experimental Design

•2 Temperature Sensors per Plot -TidbiT v2 Temp Logger

Temperature logged every 10 minutes

•Atmospheric data collected on same interval –HOBO Weather Station & Pyranometer

•Study Duration 22 August 2011 to 22 August 2012

#### **Atmospheric Data**

•Air temperature (°C)

•Relative humidity (%)

•Precipitation (mm)

•Solar radiation (W/m<sup>2</sup>)

## **Temperature Study**

Each 24 hour day was split into six time segments consisting of four hours

- 12:00-4:00 am
- 8:00-12:00 pm
- 4:00-8:00 pm

- 4:00-8:00 am
- 12:00-4:00 pm
- 8:00-12:00 pm

Maximum, minimum and mean surface temperature for each time segment

#### Over 800,000 data points were collected

## **Temperature Study**

Each 24 hour day was split into six time segments consisting of four hours

- •- 12:00-4:00 am
- 8:00-12:00 pm
- **≯** 4:00-8:00 pm

- 4:00-8:00 am
- 12:00-4:00 pm
- 8:00-12:00 pm

Maximum, minimum and mean surface temperature for each time segment

Over 800,000 data points were collected

![](_page_69_Figure_0.jpeg)

![](_page_70_Figure_0.jpeg)

## Daily Synthetic Turf Models

| Synthetic Turf Surface Temperature Model                                                                                         | R <sup>2</sup> - value |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------|
| TurfMax = $-10.25 + (1.622*Max \text{ forecasted} \text{ temperature °C}) + (0.023*Max \text{ forecasted solar radiation W/m2})$ | 0.87                   |
| TurfMean = $0.58 + (0.948 * Mean forecasted temperature °C) + (0.035 * Mean forecasted solar radiation W/m2)$                    | 0.95                   |
| TurfMin = -0.73 + (0.98 *Minimum forecasted temperature °C)                                                                      | 0.94                   |
## Model Accuracy

| Hourly<br>Data | TurfMax    | TurfMean | TurfMin |
|----------------|------------|----------|---------|
| 24 hours       | +/- 4.41°C | N/A      | N/A     |
| 48 hours       | +/- 5.33°C | +/- 1ºC  | +/- 1ºC |
| 72 hours       | +/- 4.75°C | +/- 1ºC  | +/- 1ºC |

Future research needs to include wind speed and irrigation.

Turf & Ornamental Field Day - September 11, 2014

## **Questions?**

