

Parched Earth: Effects of the Historic Texas Drought

Gerald Henry, Ph.D. Assistant Professor – Turfgrass Science Texas Tech University

Outline

- I. 2011 Texas Drought
- II. Effect on Turfgrass/Golf Industry
- III. Unique Environment West TX
- IV. University Research

2011 Drought - Texas

- Most severe one-year drought on record
- July 2011 was the warmest month ever
- Billions of dollars in agronomic damages
- 3500 square miles lost from wild fires

2011 Drought - Texas

2011 Precipitation (Jan. – Sept.)

- Lubbock 1.1 "
- El Paso 0.1 "
- Amarillo 1.1 "
- Midland 0.1 "
- Pecos 0 "
- San Angelo 2.9 "

- (Normal 7.1 ")
 - (Normal 2.4 ")
 - (Normal 9.4 ")
 - (Normal 5.6 ")
 - (Normal 4.2 ")
- 2.9 " (Normal 10.2 ")

2011 Drought - Texas

<u>July – Record Temperatures</u>

- Amarillo 111 F
- Childress 117 F
- Lubbock 112 F
- Midland 111 F
- San Angelo 108 F
- Wichita Falls 111 F
- San Antonio 104 F
- Dallas 104 F

(14 days above 100)

(18 days above 100)
(20 days above 100)
(24 days above 100)
(26 days above 100)
(7 days above 100)
(7 days above 100)

Empty stock tank at a ranch in Manor, TX

Ranchers forced to sell starving cattle at auction – Fredericksburg, TX

175-Acre Dry-land Cotton Farm in Garfield, TX

Hundreds of acres of corn destroyed in Round Rock, TX

Every county in TX had a ban burn in effect at one point

Over 3500 square miles were burned by wild fires

Boat docks are unusable at Lake Travis

Cypress Creek arm of Lake Travis

Drought Associated Damage

- Turfgrass death/reduction in aesthetics
- Shrinking and swelling of clay

 Pipe breaks, misaligned heads, cart path cracks
- Bird and burrowing animal damage
- Loss of ornamental plantings
- Spending next years budget this year
- Increase in course fees

Managing Turf During Drought

- Syringing greens and tees
 - Use of wetting agents
- Provide just enough water to keep turf in fairways and roughs alive
- Use water bags for trees
- Manage salt issues through gypsum applications and flushing
- Significant golf cart restrictions

Transition Zone

West Texas

- Unique Environment
 - Hot summers
 - Cold winters
 - Low humidity
 - High soil pH
 - Low annual rainfall
 - Salinity
 - Gusting winds

Utilized Turf Species

- Cool-season grasses

 Tall Fescue
 Hybrid Bluegrass

 Warm-season grasses

 Bermudagrass
 - (common and hybrids)
 - Zoysiagrass
 - Buffalograss

Seashore Paspalum (Paspalum vaginatum)

- Medium to fine textured rhizomatous and stoloniferous warm-season grass
- Good heat, drought, and salt tolerance
- Limitations:
 - Cold tolerance,
 disease pressure

Seashore Paspalum Collection

- October 2010 trip to Guana Island – BVI
- Tropical Dry Forest

 15 inches/year
- Presence of Seashore Paspalum documented in 1960s
- 15 accessions taken from 3 regions of the island

Buffalograss Breeding

- Stoloniferous warmseason grass
- Good heat, drought, and cold tolerance
- Low fertility requirement
- Limitations:
 - Shade tolerance and recuperative capacity

Tall fescue

- Primary cool-season grass used in the transition zone
- Good heat, drought, and salt tolerance
- Collaboration with Dr. Bill Meyer, RU
- Evaluation of new germplasm for increased drought, heat, and salt tolerance

Establishment

Bermudagrass Establishment

- Common bermuda establishment from plugs
- Fertilizer + soil amendments

Root and Shoot Weight 4 MAP

Bermudagrass Establishment

- Common bermuda establishment from seed
- Fertilizer + soil amendments

Root and Shoot Weight 2 MAP

Common Barley – 1 MAT

Henry et al. 2012. Crop Sci. Soc. of Am.

Mulching Media

- 1 million tons of cotton gin trash produced yearly
- High temps. and gusting winds complicate establishment from seed

Buffalograss establishment from seed

Henry et al. 2009. Crop Sci. Soc. of Am. Cooper et al. 2011. Southern Weed Sci. Soc.

Buffalograss – No Mulch

Buffalograss – Wheat Straw

Buffalograss – Gin Trash

Buffalograss – Hydro-mulch

Turfgrass Water Consumption

Importance of Water-use Efficiency

• Water restrictions

- Imposed (County or City)
 - When, how much, source, cultivar or species, etc.
- Drought
 - Short-term or long-term
- Limited water supply
 - Sources decreasing in size and availability
- Water quality
 - Salinity, contaminants, etc.

Materials and Methods

- Location: Quaker Research Farm, Lubbock, TX
- Soil Type: Brownfield Sandy Clay Loam
- Experimental Design: Split plot
 - Irrigation main plot
 - Mixes/blends subplots
 - 3 replications

Henry et al. 2010. Crop Sci. Soc. of Am. 55:72-1

Materials and Methods

2 MAIT

Pest Management

Spring Dead Spot (SDS)

- Casual agents: – Ophiosphaerella spp.
 These fungi grow most actively in spring and fall
- Infect roots, rhizomes, and stolons

Spring Dead Spot (SDS)

- Infections reduce bermudagrass tolerance to freezing temperatures
- Severe pressure in the transition zone
- SDS is typically enhanced by high soil pH

SDS Chemical Control - 2009

- Initial applications on 9/11/2008
- Sequential applications on 10/10/2008
- Fungicide Treatments:
 - Rubigan fb Cleary's 3336 4 fb 4 fl oz/1000 ft²
 - Rubigan + Cleary's 3336 x2 4 + 4 fl oz/1000 ft²
 - Rubigan + Cleary's 3336 x2 4 + 6 fl oz/1000 ft²
 - Rubigan + Cleary's 3336 x2 2 + 6 fl oz/1000 ft²

SDS Chemical Control - 2009

4/28/2009

SDS Chemical

Control - TTU

SDS Chemical Control - 2010

- Initial applications on 9/15/2009
- Sequential applications on 10/13/2009
- Fungicide Treatments:
 - Rubigan fb Cleary's 3336 4 fb 4 fl oz/1000 ft²
 - Rubigan + Cleary's 3336 x2 4 + 4 fl oz/1000 ft²
 - Rubigan + Cleary's 3336 x2 4 + 6 fl oz/1000 ft²
 - Rubigan + Cleary's 3336 x2 2 + 4 fl oz/1000 ft²
- All treatments applied with Grounded at 1.5 GPA

SDS Chemical Control - 2010

4/23/2010

Beck et al. 2010. Crop Sci. Soc. of Am.

Rubigan + Cleary's 3336 $-4 + 6 \text{ fl oz}/1000 \text{ ft}^2 \text{ x2}$

+ Grounded

4/23/2010

SDS Chemical + Cultural Control

Cultivation + Fungicides

- Cultivation Treatments
 - Aeration
 - Verticutting
 - Aeration + Verticutting
 - No Cultivation
- Fungicide Treatments

 Torque 0.6 fl oz/1000 x2
 Rubigan 4 fl oz/1000 x2
 Applied Aug. fb Sept.

SDS Control – Fungicides + Cultivation

Beck et al. 2011. Crop Sci. Soc. of Am.

Cultivation + Fungicides Trial 2011

Predicted Drought of 2022

Questions?